Geometry

Name _	
Date	Pariod

Chapter 1 Basics of Geometry

Ch 1.1 Points, Lines and Planes

Undefined Terms:

- 1)
- 2)
- 3)

Points that lie on the same line are called _____

Points that lie on the same plane are called _____

Defined Terms:

- 1)
- 2)
- 3)

Intersections:

The intersection of two different lines is a ______

The intersection of two different planes is a _____

Use the diagram and identify examples of the following:

- 1) a segment
- 2) a plane
- 3) intersection lines
- 4) intersecting planes
- 5) a point not in a plane
- 6) a line not in a plane

Always, Sometimes, Never

1) A line _____ has endpoints.

2) A line and a point _____ intersect.

3) A plane and a point ______ intersect.

4) Two planes ______ intersect in a line.

5) Any three points ______ determines a plane.

6) Two lines that are not parallel ______ intersect.

Ch 1.2 Measuring and Constructing Segments

Postulate: _____

Theorem:

Congruent segments: _____

Segment Addition
Postulate

A
B
C
HAB
B
C

Ch 1.3 Using Midpoint and Distance Formulas

Midpoint:

Segment Bisector:

Example:

x =

Midpoint Formula

M(,)

Compute the following.

1) Midpoint of A(1, 2) and B(7, 8)

2) Midpoint of C(-4, 3) and D(-6, 5)

3) The midpoint of a segment VW is M(-1, -2) and one endpoint is W(4, 4). Determine the coordinate of V.

Distance Formula

Example: Compute the distance between the following points:

$$(x1, y1) = (2, 3)$$

$$(x2, y2) = (4, -1)$$

Ch 1.4 Perimeter and Area in the Coordinate Plane

Properties of a Polygon:

Number of Sides	Type of Polygon	Number of Sides	Type of Polygon
3		8	
4		9	
5		10	
6		12	
7		n	

Convex Polygon:

interior

Concave Polygon:

Classify these polygons by type and convex or concave:

1)

2)

3)

Perimeter and Area

Triangle

A =

Square

P =

A =

Rectangle

P =

A =

Example: Calculate the perimeter and area of the figure on the right.

Example: Calculate the perimeter and area of the quadrilateral EFGH, in which E(-3, 6), F(-7, 3), G(-1, -5), H(3, -2).

Ch 1.5 Measuring and Constructing Angles

Vocabulary

angle:

angle interior:

Naming an angle

Use the vertex:

Use a point on each ray and the vertex:

Use a number:

Examples of

Ambiguous angle name:

Unambiguous angle name:

Measure of an Angle

The measure of ______, also written ______, is the difference of

the angles of the rays _____ and ____ on a protractor.

Types of Angles

acute:

right:

obtuse:

straight:

acute angle right angle obtuse angle straight angle

Angle Addition

Postulate

angle bisector:

Ch 1.6 Describing Pairs of Angles

Vocabulary

complementary angles:

supplementary angles:

adjacent angles:

Example

1. Using the diagram to the right, name a pair of complementary angles, supplementary angles, and a pair of adjacent angles.

- 2. Assume ______ is a complement of ______, and _____, Determine _____.
- 3. Assume ______ is a supplement of ______, and ______, Determine _____.

Vocabulary

linear pair:

vertical angles:

Example

- 1. Name the vertical angles
- 2. Name the linear pairs

Interpreting a Diagram

Using the diagram to the right.

We can assume:

We cannot assume: